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Fig. 1. We prove that Gaussian primitives are equivalent to stochastic solids, and leverage this equivalence to reconstruct high-fidelity, multi-view-consistent
shapes from multi-view images.

Gaussian Splatting (GS) has demonstrated impressive quality and
efficiency in novel view synthesis. However, shape extraction from
Gaussian primitives remains an open problem. Due to inadequate
geometry parameterization and approximation, existing shape recon-
struction methods suffer from poor multi-view consistency and are
sensitive to floaters. In this paper, we present a rigorous theoretical
derivation that establishes Gaussian primitives as a specific type of
stochastic solids. This theoretical framework provides a principled
foundation for Geometry-Grounded Gaussian Splatting by enabling
the direct treatment of Gaussian primitives as explicit geometric rep-
resentations. Using the volumetric nature of stochastic solids, our
method efficiently renders high-quality depth maps for fine-grained
geometry extraction. Experiments show that our method achieves the
best shape reconstruction results among all Gaussian Splatting-based
methods on public datasets.

CCS Concepts: • Computing methodologies → Point-based models;
Volumetric models; Rendering.

Additional Key Words and Phrases: Gaussian Splatting, Stochastic
Solids, Shape Reconstruction

1 Introduction
3D shape reconstruction from multi-view images is a long-
standing problem with broad impact in virtual reality [Snavely
et al. 2006], autonomous driving [Schmied et al. 2023], and
robotics [Cadena et al. 2017; Engel et al. 2014]. Recent progress
has been driven by implicit neural representations, most notably
NeRF [Mildenhall et al. 2020]. Many state-of-the-art methods
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further adopt geometry-grounded radiance fields: they start
from a canonical geometry field (e.g., SDF/occupancy) and
derive the rendering formulation accordingly. Methods such as
VolSDF [Yariv et al. 2021] and NeuS [Wang et al. 2021] follow
this principle by anchoring the rendering to an explicit surface
and yielding reliable geometry that is consistent across views.
Despite these advances, geometry-grounded radiance fields
typically rely on dense sampling, e.g., ray marching, along
camera rays, resulting in slow training and inference.

In contrast, Gaussian Splatting [Kerbl et al. 2023] represents
scenes as a collection of Gaussian primitives and leverages
efficient rasterization, enabling fast optimization and real-time
novel view synthesis. Several follow-up works [Chen et al. 2024;
Guédon et al. 2025b; Huang et al. 2024; Yu et al. 2024c; Zhang
et al. 2024, 2025a] have extended Gaussian Splatting to shape
reconstruction with promising results. Nevertheless, Gaussian
Splatting does not inherently define a surface, unlike geometry-
grounded NeRF methods that start from an SDF/occupancy
field. Existing Gaussian Splatting–based methods therefore
extract depth or surfaces from the Gaussian radiance field
using heuristic rules. A more principled geometric formulation
can improve cross-view consistency and enable higher-fidelity
reconstruction, as shown in the right of Figure 1. Unlike these
heuristic pipelines, we provide a principled geometric foun-
dation for Gaussian primitives, enabling higher-fidelity shape
reconstruction.

In this paper, we adopt the philosophy of geometry-grounded
radiance fields by equipping Gaussians with a canonical geom-
etry field. We achieve this by leveraging the theoretical founda-
tion provided by the recent work ‘Objects as Volumes’ [Miller
et al. 2024], which offers a stochastic interpretation of the
geometry-grounded radiance field. Under this theory, we
analyze the rendering equation of Gaussian Splatting and
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Fig. 2. Overview of our depth-rendering pipeline. (a) We rasterize
Gaussian primitives and sort them by depth. (b) Standard Gaussian Splat-
ting yields step-wise transmittance under splat compositing. (c) Under our
stochastic solid formulation, attenuation is modeled continuously within
each primitive, yielding a smooth transmittance curve. (d) Prior work esti-
mates the ray-wise median depth as the point where transmittance drops
to 0.5. (e) Forward pass: we locate the median depth 𝑡𝑚𝑒𝑑 , i.e.,𝑇 = 0.5, via
binary search. (f) Backward pass: we backpropagate through 𝑡𝑚𝑒𝑑 using a
closed-form gradient with respect to all Gaussians contributing to the ray.

demonstrate that rendering a Gaussian primitive is identical to
rendering a stochastic solid (Section 4.1). This unifies rendering
formulations of Gaussian Splatting and NeRF-based methods,
allowing us, for the first time, to derive a geometric field for
Gaussian primitives. Using our formulation, we develop an
efficient depth-rendering method that approximates the isosur-
face of the geometric field and extracts finer-grained geometry
from Gaussian primitives (Section 4.2), exhibiting inherent
multi-view consistency and robustness to floaters.

Figure 2 illustrates our depth-rendering pipeline to exem-
plify our advantages in detail. Prior Gaussian Splatting–based
methods define the median depth along a ray as the location
where transmittance drops to 0.5, as shown in Figure 2(d).
However, because of discrete changes in transmittance, this
method fails to capture the joint effect of overlapping Gaussians
and leading to jagged depth steps. In contrast, the stochastic
solids model volumetric attenuation continuously and yield
a smooth transmittance curve. Building on this, we endow
Gaussian primitives with the same continuous behavior, en-
abling more detailed depth maps. To compute the median
depth, we exploit the monotonicity of transmittance and apply
a binary search to locate the 0.5-transmittance crossing. We
further derive a closed-form expression for the gradient of the
median depth with respect to the parameters of all Gaussians
along the ray for efficient backpropagation.

The main contributions of this paper are summarized as,
• We analyze the rendering equation of Gaussian Splatting

and demonstrate that the Gaussian primitives can be
regarded as stochastic solids, which provides theoret-
ical guidance for shape reconstruction from Gaussian
Splatting (Section 4.1).

• Based on this stochastic theory, we propose an efficient
method for rendering and optimizing depth maps from
Gaussian primitives, enabling accurate geometry extrac-
tion (Section 4.2).

• Extensive experiments demonstrate that our method
achieves the best reconstruction accuracy among Gauss-
ian Splatting-based methods, while maintaining opti-
mization efficiency of the Gaussian Splatting (Section 5).

2 Related Work

2.1 Continuous Radiance Fields
NeRF [Mildenhall et al. 2020] models a scene as a continuous
radiance field, typically parameterized by an MLP, and has
shown strong performance in challenging effects such as re-
flections and scattering [Andrea et al. 2023; Levy et al. 2023;
Tang et al. 2024]. Building on this backbone, Mip-NeRF intro-
duces an anti-aliased multiscale formulation through conical-
frustum rendering [Barron et al. 2021], and Mip-NeRF 360
extends it to unbounded scenes with specialized parameter-
ization and regularization [Barron et al. 2022]. To improve
efficiency, several works replace MLP ray marching with ex-
plicit volumetric parameterizations, e.g., Plenoxel’s voxel-grid
optimization [Fridovich-Keil et al. 2022] and SVRaster’s real-
time rasterization of adaptive sparse voxels [Sun et al. 2025];
Instant-NGP further accelerates training with multiresolution
hash grids [Müller et al. 2022].

While NeRF was originally designed for view synthesis,
recovering accurate geometry from a generic density field is
non-trivial, motivating surface-aware formulations that cou-
ple volume rendering with implicit surfaces. VolSDF [Yariv
et al. 2021], NeuS [Wang et al. 2021], and UNISURF [Oechsle
et al. 2021] parameterize density through a signed distance
function (SDF) and design rendering weights to obtain more
faithful surfaces. Neuralangelo further combines multireso-
lution hash-grid encodings with neural surface rendering to
achieve high-fidelity reconstruction from RGB captures [Li
et al. 2023]. GeoSVR [Li et al. 2025] explores explicit sparse
voxels for geometrically accurate surface reconstruction, lever-
aging uncertainty-aware depth constraints and voxel surface
regularization to improve detail and completeness. On the the-
oretical side, Objects as Volumes [Miller et al. 2024] provides
a stochastic-geometry view of representing opaque solids as
volumes and clarifies when exponential transmittance-based
models are physically consistent, offering principled insights
into surface-oriented volume rendering. Although these meth-
ods can reconstruct high-quality geometry, they generally suffer
from extreme time consumption.

2.2 Primitive Based Representations
Gaussian Splatting [Kerbl et al. 2023] represents 3D scenes
using a set of 3D Gaussian primitives. Combining with raster-
ization techniques, it avoids the time-consuming ray march-
ing process in NeRF rendering. As a result, it achieves both
real-time rendering and accelerated training. Building on this
foundation, Mip-Splatting [Yu et al. 2024a] addresses aliasing
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by incorporating low-pass filters, while LightGaussian [Fan
et al. 2024] optimizes memory usage with a compact represen-
tation. VastGaussian [Lin et al. 2024] further extends Gaussian
Splatting to larger-scale scenes. StochasticSplats [Kheradmand
et al. 2025] adopts a Monte Carlo estimator to enable sort-free
rendering, further improving rendering efficiency.

Although 3DGS achieves high-quality novel-view synthesis,
the geometry recovered from purely photometric optimization
is often unreliable. To improve surface reconstruction, prior
work either imposes stronger geometric priors or adds geo-
metric supervision. SuGaR [Guédon and Lepetit 2024] and
NeuGS [Chen et al. 2023] favor surface-aligned (flattened) Gaus-
sians to better capture object boundaries and facilitate mesh
extraction. Related approaches [Huang et al. 2024; Zhang et al.
2025b] replace 3D Gaussians with 2D primitives to encourage
surface-like representations, although such constraints may
reduce modeling flexibility and become unstable in complex
scenes. GFSGS [Jiang et al. 2025] further leverages stochastic
solids to construct 2D surfels for shape reconstruction. Beyond
primitive design, 3DGSR [Lyu et al. 2024] and GSDF [Yu et al.
2024b] jointly optimize Gaussians with an implicit neural SDF
field, improving reconstruction fidelity while retaining splat-
ting efficiency, and PGSR [Chen et al. 2024] adds multi-view
geometric regularization.

Despite promising empirical progress, geometry extraction
in Gaussian Splatting still relies on heuristic depth definitions.
These heuristics often yield noisy depth maps that have poor
consistency across viewpoints and thus a weaker supervisory
signal for optimization. This raises a fundamental question of
whether Gaussian representations support an intrinsic notion
of geometry akin to NeRF-based methods. We address it by
adopting a stochastic approach to compute depth maps in a
more principled manner for high-quality shape reconstruction.

3 Preliminary

3.1 Gaussian Splatting
We first briefly revisit Gaussian Splatting (GS). A 3D Gaussian
primitive is defined as follows:

𝐺 (x) = 𝑜𝑒−(x−x𝑐 )⊤Σ−1 (x−x𝑐 ) , (1)

where 𝑜 is the opacity, Σ ∈ R3×3 is the covariance, x ∈ R3 repre-
sents a point in 3D space, and x𝑐 ∈ R3 denotes the Gaussian’s
center. To enable fast rasterization, Gaussian Splatting (GS)
methods employ a local affine approximation to project 3D
Gaussian primitives to 2D Gaussians on the image plane with
the covariance matrix Σ′

2𝐷 The opacity of the 2D Gaussian 𝛼 (u)
is defined as the maximum value of the projected 2D Gaussian:

𝛼 (u) = 𝑜𝑒−(u−u𝑐 )⊤Σ
′−1
2𝐷 (u−u𝑐 ) , (2)

where u is the coordinate of the pixels in the image space, u𝑐 is
the projected center of the Gaussian. In this way, 3D Gaussian
primitives are projected into 2D Gaussians. These 2D Gaussians
are then sorted and alpha-blended to compute the final color.
More details can be found in the supplementary material.

3.2 Objects as Volumes
In this subsection, we provide a brief overview of [Miller et al.
2024], which presents a method to render stochastic solids using
volume rendering. For a stochastic opaque solid characterized
by its occupancy O and vacancy v, i.e., 1−O, the authors derive
the attenuation coefficient 𝜎 of the object as follows:

𝜎 (x, 𝜔) = |𝜔 · ∇𝑙𝑜𝑔(v(x)) | = |𝜔 · ∇v(x) |
v(x) , (3)

where 𝜔 is the viewing direction and x is the 3D position. With
this attenuation coefficient, they derive the volume rendering
for a stochastic solid as,

C =

∫ 𝑡𝑓

𝑡𝑛

𝑝 (𝑡)c(x(𝑡), 𝜔) 𝑑𝑡,

𝑝 (𝑡) =𝑇 (𝑡)𝜎 (x(𝑡), 𝜔),

𝑇 (𝑡) = 𝑒𝑥𝑝

(
−
∫ 𝑡

𝑡𝑛

𝜎 (x(𝑠), 𝜔) 𝑑𝑠
)
,

(4)

where 𝑝 is the free-flight distribution [Miller et al. 2024] that
represents the statistical distribution of the distances that the
light travels before collision and serves as the weight for color
integration, and 𝑇 (𝑡) is the transmittance along the ray.

In our work, we regard a 3D Gaussian primitive as a stochas-
tic solid and design an appropriate attenuation coefficient 𝜎
for it. With this coefficient, the volume rendering of a Gaussian
primitive, as described in Equation 4, is equivalent to its raster-
ized rendering. This enables us to study Gaussian Splatting in
a more principled manner and develop a shape reconstruction
method for Gaussian primitives.

4 Method
In the following sections, we first introduce our method for a
single Gaussian primitive. We then design an efficient method
for rendering depth maps from multiple Gaussian primitives.

4.1 Gaussian Primitives as Stochastic Solids
We treat a Gaussian primitive as a stochastic solid [Miller et al.
2024] and derive its rendering function. As shown in Figure 3,
we prove that, with a proper attenuation coefficient 𝜎 , the
volume rendering of this stochastic Gaussian solid is equivalent
to the rasterization rendering of the original Gaussian Splatting.
Specifically, the opacity 𝛼 for a pixel in Equation 2 corresponds
to the maximum value of the Gaussian function along that
pixel’s view ray (as proved in the supplementary). Therefore,
the rendered color of a single Gaussian is given by:

C = c𝛼 = c𝐺 (𝑡∗), (5)

where 𝑡∗ is the maximum point along the ray 𝑙 : o +𝜔𝑡 , and we
denote 𝐺 (o + 𝜔𝑡∗) by 𝐺 (𝑡∗) for simplification.

Equation 5 cannot uniquely determine the attenuation co-
efficient. So, we impose three additional constraints. Given a
Gaussian primitive 𝐺 (x), we assume that

– When 𝐺 (x1) ≥ 𝐺 (x2), it follows that o(x1) ≥ o(x2), indi-
cating that positions closer to the Gaussian center have
higher occupancy;
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Fig. 3. Given a Gaussian primitive, we regard it as a stochastic solid and derive an appropriate attenuation coefficient with Equation 3. With our attenuation
coefficient, the volume rendering of this stochastic solid is equivalent to the rasterization rendering developed in the original Gaussian Splatting.

– The occupancy of the solid approaches 0 when x is far
from the Gaussian center;

– The occupancy o(x) is differentiable from x.
This leads us to derive a straightforward and unique expression
for the vacancy:

v(x) =
√︁
1 −𝐺 (x). (6)

To prove Equation 6, we first derive the volume rendering
of a Gaussian primitive following the method in [Miller et al.
2024] as,

C =

∫ ∞

−∞
𝑇 (𝑡)𝜎 (x(𝑡), 𝜔)c𝑑𝑡 = c(1 − v(𝑡∗)2), (7)

where the attenuation coefficient 𝜎 originates from the stochas-
tic solid as described in Equation 3, resulting in the integral
in terms of vacancy v(𝑡∗). Compared with the rasterization in
Equation 5 and the volumetric rendering in Equation 7, we can
obtain,

C = c𝐺 (𝑡∗) = c(1 − v(𝑡∗)2), (8)
In other words, we derive the following condition,

v(𝑡∗) =
√︁
1 −𝐺 (𝑡∗). (9)

Therefore, a stochastic Gaussian solid can produce the same
rendering results as the rasterization in Gaussian Splatting if
its vacancy adheres to Equation 6. The proof of uniqueness and
other details can be found in our supplementary materials. Now,
we can use Equation 3 and Equation 6 to obtain attenuation
coefficients 𝜎 inside a Gaussian primitive, allowing us to obtain
accurate depth maps and smooth optimization.

This property lets us move beyond heuristic geometry read-
outs, leading to a principled shape reconstruction approach
built directly on Gaussian primitives. In the following sections,
we apply this theory to Gaussian Splatting and demonstrate
that it substantially improves shape reconstruction.

4.2 Depth from Stochastic Solids
In Gaussian Splatting, photometric supervision alone is insuf-
ficient to reconstruct high-quality shapes. To better recover
surface geometry, recent works [Chen et al. 2024; Guédon
and Lepetit 2024; Huang et al. 2024] render depth maps from
Gaussian primitives and add geometric regularizers, and then
backpropagate their gradients to the Gaussian parameters.

Nevertheless, the rendered depth maps are noisy and have
poor cross-view consistency, e.g., as shown in Figure 8 and 4,
providing weak geometric supervision. This motivates us to
improve depth rendering in Gaussian Splatting by utilizing
attenuation coefficients derived from stochastic solids.

The rendering pipeline is shown in Figure 2. We first derive
our depth computation method, then show that it improves
multi-view consistency and produces cleaner depth maps.

4.2.1 Depth definition. Following prior Gaussian Splatting meth-
ods, we use the median depth 𝑡𝑚𝑒𝑑 for geometric regularization:

𝑡𝑚𝑒𝑑 =𝑇 −1 (0.5), (10)

where 𝑇 −1 (∗) is the inverse function of the transmittance 𝑇 (𝑡).
Following prior work [Blanc et al. 2025a,b; Condor et al. 2025],
we assume that the events of a view ray intersecting different
Gaussians are statistically independent. Under this assumption,
the overall transmittance at 𝑡 along the ray is the product of
the transmittance calculated at each Gaussian primitive as,

𝑇 (𝑡) =
∏
𝑖

𝑇𝑖 (𝑡) , (11)

where 𝑇𝑖 (𝑡) is the transmittance of the 𝑖-th Gaussian as:

𝑇𝑖 (𝑡) =
{
v𝑖 (𝑡), 𝑡 ≤ 𝑡∗𝑖
v𝑖 (𝑡∗𝑖 )2/v𝑖 (𝑡), 𝑡 > 𝑡∗𝑖 .

(12)

Here, 𝑡∗𝑖 is the Gaussian’s maximum point along the camera ray.
Equation 12 is derived from the continuous attenuation profile
within each Gaussian as defined in Equation 3, capturing more
detailed geometry information. The derivation of Equation 12
can be found in the supplementary material.

Discussion. Previous methods estimate depth either from
per-view depth planes [Yu et al. 2024c; Zhang et al. 2024] that
are view-dependent by design, or via opacity-weighted ray av-
eraging [Chen et al. 2024] that is easily biased by view-specific
floaters. These depth extraction strategies often lead to poor
cross-view consistency. In contrast, we will show that interpret-
ing Gaussian Splatting as a stochastic solid yields a median
depth estimate with strong multi-view consistency. Recall that
the median depth is the point where the transmittance first
reaches a fixed threshold, i.e.,𝑇 = 0.5. From Equations 12 and 11,
if the overall transmittance crossing 𝑇 = 0.5 occurs before the
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Fig. 4. Depth maps of Gaussian Splatting-based methods. We visualize the depth maps by converting them to 3D points. Our method produces a clean
and smooth depth map. PGSR uses expected depth, yielding much noise at edges. GOF uses median depth and suffers from unsmooth depth changes.
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Fig. 5. Illustration of depth rendering methods. (a) The green plane’s
opacity 𝛼 decreases smoothly from 1 on the right to 0 on the left. Conse-
quently, (b) the median depth changes in a step-like manner, whereas (c)
the expected depth varies continuously.
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Fig. 6. Illustration of vacancy along the camera ray. The vacancy value
on the ray equals the transmittance on the front side of the Gaussians.

peak of the contributing Gaussians, then the transmittance co-
incides with the 3D vacancy field as illustrated in Figure 6. So,
the depth map is a view-independent 0.5-level isosurface. This
regime is common because optimization clusters high-opacity
Gaussians near the surface, making the transmittance drop
mainly on their near sides. While floaters can still perturb the
ray, the median depth is more robust to such outliers than the
alpha-averaged expected depth, leading to stronger multi-view
consistency.

Beyond improved multi-view consistency, our method pro-
duces cleaner depth maps as shown in Figure 4. Depth obtained
via alpha-weighted compositing tends to interpolate between
foreground and background at boundaries, leading to blurred
silhouettes as shown in Figure 5. Median depth, defined by
the 𝑇 = 0.5 crossing, gives sharper boundary transitions. How-
ever, in prior Gaussian Splatting formulations, transmittance
is updated in discrete steps, so the 0.5 crossing often snaps
to a single Gaussian; neighboring pixels may therefore select

different Gaussians, producing jagged artifacts. Our stochastic-
solid formulation models attenuation continuously within
each Gaussian, yielding a smooth transmittance function and
reducing staircasing while preserving sharp boundaries.

4.2.2 Implementation. In general, Equation 10 does not admit
a closed-form solution. To address this, we exploit the mono-
tonicity of transmittance along each ray and use an iterative
binary search to find the median depth. During backpropaga-
tion, we do not require an iterative search. Instead, we derive
the closed-form solution for the gradient of depth 𝑡𝑚𝑒𝑑 with
respect to the Gaussians’ parameters as,

𝜕𝑡𝑚𝑒𝑑

𝜕𝜃
= − 𝜕𝑇 (𝑡𝑚𝑒𝑑 ;𝜃 )

𝜕𝜃
/ 𝜕𝑇 (𝑡 ;𝜃 )

𝜕𝑡

��
𝑡=𝑡𝑚𝑒𝑑

, (13)

where 𝜃 denotes the Gaussian parameters along the ray.
Equation 13 shows that the gradient can be distributed to all

contributing Gaussians along the ray, unlike previous methods
where the gradient of the median depth was only applied to a
single Gaussian. This stems from our stochastic-solid formula-
tion, which yields a differentiable transmittance function. As a
result, the median depth 𝑡𝑚𝑒𝑑 varies smoothly with the Gauss-
ian parameters, providing denser supervision for optimization.
The derivation of Equation 13 and implementation details are
provided in the supplementary material.

4.3 Optimization with Stochastic Solids
We optimize scenes using photometric loss [Kerbl et al. 2023],
normal consistency loss [Huang et al. 2024], and multi-view
regularization [Chen et al. 2024]; details are provided in the
supplementary material. These losses require rendering RGB
images, normal maps, and depth maps. Fully volumetric ren-
dering for all modalities is computationally expensive [Blanc
et al. 2025a,b; Condor et al. 2025]. We therefore retain the
standard Gaussian Splatting approximation for RGB and nor-
mals [Zhang et al. 2024], while computing depth using Eq. 10.
Experiments show that this setting can significantly improve
the shape reconstruction accuracy of Gaussian Splatting, while
maintaining the efficiency. Nevertheless, we believe that extend-
ing our volumetric formulation to RGB and normal rendering
can further improve accuracy, which we leave for future work.

5 Experiments
We evaluate our method on several public datasets and compare
it with existing state-of-the-art methods.
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Table 1. Quantitative comparison on the DTU dataset [Jensen et al. 2014]. We report Chamfer Distance and average optimization time for different methods.
Among explicit Gaussian Splatting–based approaches, our method achieves the best results and attains accuracy comparable to GeoSVR. All Gaussian Splatting
methods are evaluated using half-resolution images.

24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean Time

im
pl

ic
it NeRF [Mildenhall et al. 2020] 1.90 1.60 1.85 0.58 2.28 1.27 1.47 1.67 2.05 1.07 0.88 2.53 1.06 1.15 0.96 1.49 > 12h

VolSDF [Yariv et al. 2021] 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86 > 12h
NeuS [Wang et al. 2021] 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84 > 12h
Neuralangelo [Li et al. 2023] 0.37 0.72 0.35 0.35 0.87 0.54 0.53 1.29 0.97 0.73 0.47 0.74 0.32 0.41 0.43 0.61 > 12h

ex
pl

ic
it

3D GS [Kerbl et al. 2023] 2.14 1.53 2.08 1.68 3.49 2.21 1.43 2.07 2.22 1.75 1.79 2.55 1.53 1.52 1.50 1.96 7.8m
2D GS [Huang et al. 2024] 0.48 0.91 0.39 0.39 1.01 0.83 0.81 1.36 1.27 0.76 0.70 1.40 0.40 0.76 0.52 0.80 11.3m
GOF [Yu et al. 2024c] 0.50 0.82 0.37 0.37 1.12 0.74 0.73 1.18 1.29 0.68 0.77 0.90 0.42 0.66 0.49 0.74 52m
3DGSR [Lyu et al. 2024] 0.44 0.96 0.40 0.36 1.02 0.80 0.64 1.20 1.08 0.97 0.54 0.72 0.37 0.52 0.42 0.70
RaDe-GS [Zhang et al. 2024] 0.43 0.75 0.35 0.37 0.81 0.74 0.74 1.19 1.20 0.65 0.61 0.84 0.35 0.66 0.46 0.68 8.2m
GFSGS [Jiang et al. 2025] 0.40 0.59 0.39 0.38 0.72 0.59 0.65 1.08 0.93 0.59 0.50 0.67 0.34 0.47 0.40 0.58 16.8m
PGSR [Chen et al. 2024] 0.34 0.54 0.44 0.37 0.78 0.57 0.49 1.06 0.63 0.59 0.47 0.50 0.30 0.37 0.34 0.52 30.5m
GeoSVR [Li et al. 2025] 0.32 0.51 0.30 0.33 0.71 0.48 0.42 1.03 0.62 0.56 0.33 0.46 0.30 0.34 0.32 0.47 53.3m
Ours (20k) 0.38 0.50 0.27 0.31 0.80 0.43 0.42 1.04 0.64 0.52 0.31 0.56 0.30 0.31 0.33 0.47 15.0m
Ours (30k) 0.37 0.50 0.27 0.31 0.81 0.43 0.42 1.05 0.64 0.52 0.32 0.58 0.30 0.31 0.33 0.48 25.3m

Table 2. Quantitative comparison on the Tanks & Temples
Dataset [Knapitsch et al. 2017]. We report the F1-score and average
optimization time.

Barn Cat. Cour. Igna. Meet. Truc. Mean Time

im
pl

ic
it NeuS 0.29 0.29 0.17 0.83 0.24 0.45 0.38 >24h

Geo-NeuS 0.33 0.26 0.12 0.72 0.20 0.45 0.35 >24h
Neurlangelo 0.70 0.36 0.28 0.89 0.32 0.48 0.50 >24h

ex
pl

ic
it

2D GS 0.36 0.23 0.13 0.44 0.16 0.26 0.30 15.5m
GOF 0.51 0.41 0.28 0.68 0.28 0.59 0.46 71.6m
RaDe-GS 0.49 0.36 0.27 0.72 0.27 0.61 0.45 12.1m
PGSR 0.66 0.44 0.20 0.81 0.33 0.66 0.52 42.9m
GeoSVR 0.68 0.49 0.34 0.83 0.37 0.66 0.56 66.4m
Ours 0.70 0.56 0.38 0.81 0.42 0.70 0.60 32.1m

Implementation Details. We use a local affine approximation
and adopt RaDe-GS [Zhang et al. 2024] to estimate each Gauss-
ian peak 𝑡∗𝑖 . For efficiency, we follow gsplat [Ye et al. 2025] and
use warp-level reductions for gradient accumulation. We apply
the 3D filtering from Mip-Splatting [Yu et al. 2024a] (without
its 2D filter), the densification strategy from GOF [Yu et al.
2024c], and the exposure compensation from PGSR [Chen et al.
2024]. Multi-view regularization is implemented with a custom
CUDA kernel. We will release our code.

Datasets. We evaluate reconstruction accuracy on DTU [Jensen
et al. 2014] and Tanks & Temples (TnT) [Knapitsch et al. 2017].
Following prior work, we use the standard 15-scene DTU
split and the common 6-scene TnT subset. We report Chamfer
Distance on DTU and F1-score on TnT.

Mesh Extraction. Following previous works [Yu et al. 2024c;
Zhang et al. 2024], we apply the TSDF fusion [Curless and
Levoy 1996] implemented by Open3D [Zhou et al. 2018] to
extract meshes for the DTU dataset and adopt Marching Tetra-
hedra [Guédon et al. 2025a; Yu et al. 2024c] for large-scale
scenes in the Tanks & Temples dataset. Inspired by GOF, we
define an indicator function over 3D space for Marching Tetra-
hedra. Specifically, a point is classified as inside the mesh if it
is occluded in any training view, i.e., if its transmittance falls
below 0.5; otherwise, it is classified as outside.

5.1 Reconstruction Comparison
We compare our method against existing state-of-the-art meth-
ods in the shape reconstruction task. Table 1 and Table 2 show
the accuracy on the DTU and TnT datasets. The multi-view
regularizer adopted in PGSR and GeoSVR substantially boosts
DTU accuracy; using this regularization, our method achieves
comparable performance to both. In TnT, our method signifi-
cantly outperforms existing Gaussian Splatting-based methods
because of our depth-rendering formulation, which enables
finer geometric details, enforces view-consistent geometry, and
is robust to floaters. Figure 7 provides qualitative comparisons
among shape reconstruction methods. Our method recon-
structs finer details with more accurate geometry. Additional
qualitative results are shown in Figure 9 and Figure 10.

We report runtimes in Table 1 and Table 2. For the same
number of iterations, our method is faster than GeoSVR (15 vs.
53 min.) and PGSR (25 vs. 30 min.), thanks to a more efficient
implementation of multi-view regularization. Our runtime
is higher than the fastest baselines due to the added cost of
the binary search and the multi-view term. We expect further
speedups by tightening the initial depth interval of the binary
search, which we leave for future work.

5.2 Multi-view Consistency
Geometric consistency across views is essential for accurate
shape reconstruction. To evaluate each depth-rendering method,
we compute per-pixel cycle reprojection error during training.
For a reference and neighboring view, we render depth maps
of the reference view, back-project pixels to 3D, project into the
neighbor to sample the corresponding depth, then back-project
and reproject to the reference. The cycle error is the Euclidean
distance between the original and reprojected pixel locations.

We compare our method with PGSR [Chen et al. 2024]
and RaDe-GS [Zhang et al. 2024]. PGSR defines the ray-surface
intersection using a plane orthogonal to the shortest axis of each
3D Gaussian, whereas RaDe-GS uses the ray-wise maximizer
of the Gaussian response. For a fair comparison, we evaluate
RaDe-GS augmented with the same multi-view regularization
used in PGSR, and enable geometric regularization at 7K
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Ground Truth Ours GeoSVR PGSR
Fig. 7. Qualitative comparison on Tanks & Temples [Knapitsch et al. 2017] dataset.We compare our method with GeoSVR and PGSR. Our method
reconstructs plausible meshes with finer geometric details

15K8K7K

Neighboring 
view

Reference
view

(c)

(b)

(a)

Color map
0 10.2 0.6

30K

Fig. 8. Cycle reprojection error per iteration. We visualize the cycle reprojection error between a reference view and its nearest neighboring view
throughout optimization. Our method (a) attains lower errors on foreground regions and achieves full coverage faster than the other methods. PGSR (b) relies
on planar-based depth accumulation, which leads to weaker multi-view consistency than our volumetric formulation and suffers from noticeable floaters. We
add the multi-view regularization to RaDe-GS (c) and train it using expected depth. Zoomed-in patches are shown on the right.

iterations for all methods. As shown in Figure 8, our method
yields a better initialization and converges faster, achieving
the lowest reprojection error at 30K iterations, mainly due to
our depth formulation based on stochastic theory. In contrast,
the other methods exhibit noticeably larger reprojection errors,
and floaters that arise during training further exacerbate the
inconsistency. More results can be found in Figure 13.

5.3 Ablation Study
In this section, we evaluate the contribution of each component
when integrated into our method. Table 3 reports quantitative
results on the TnT dataset. The geometric multi-view term
𝐿𝑔𝑐 penalizes cycle reprojection error; however, it brings only
marginal gains in our setting, because our depth-rendering
formulation already provides strong multi-view consistency.
In contrast, the normal consistency loss and the exposure
compensation module consistently improve reconstruction
quality. Finally, compared with the other two depth-rendering
baselines equipped with similar regularizers, our method
achieves a more accurate shape reconstruction.

Table 3. Ablation study on Tanks & Temples [Knapitsch et al. 2017].
The normal consistency loss and the single-view geometric loss in PGSR
have a similar formulation. We denote them as 𝐿𝑛 . 𝐿𝑔𝑐 is the geometric
consistency loss. ‘exposure’ represents the exposure compensation module
from PGSR. We toggle each term on/off (✓/–) and report the resulting
reconstruction accuracy.

PGSR RaDe-GS Ours
𝐿𝑔𝑐 ✓ ✓ – ✓ ✓ ✓
𝐿𝑛 ✓ ✓ ✓ – ✓ ✓

exposure ✓ ✓ ✓ ✓ – ✓
F1-score 0.52 0.52 0.60 0.57 0.59 0.60

6 Conclusion
We reveal the intrinsic geometry for Gaussian Splatting. We
regard Gaussian primitives as stochastic solids and design
an appropriate attenuation function to make their volume
rendering identical to their rasterization-based rendering. The
stochastic theory enables depth rendering in a principled
manner. Experiments show that our method outperforms state-
of-the-art methods.
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Fig. 9. Qualitative results on the DTU [Jensen et al. 2014] dataset.

Fig. 10. Qualitative results on the Tanks & Temples [Knapitsch et al. 2017] dataset.

Viewport Ours PGSR RaDe-GS

GeoSVR 2DGSGOF

Fig. 11. Qualitative comparison of depth rendering among our method and prior methods. We visualize depth maps by back-projecting them into 3D
point clouds. RaDe-GS uses multi-view regularization and expected depth; 2DGS uses expected depth.
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Ground truth Ours PGSR GeoSVR
Fig. 12. Qualitative comparison of novel view synthesis among our method and prior methods on the Mip-NeRF360 [Barron et al. 2022] dataset.
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Fig. 13. Cycle reprojection error per iteration. We visualize the cycle reprojection error between a reference view and its nearest neighboring view
throughout optimization. We show the projection error of (a) our method, (b) PGSR, and (c) RaDe-GS with multi-view regularization. Zoomed-in patches are
shown on the right.
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Supplementary: Geometry-Grounded Gaussian Splatting

A Implementation of Depth Rendering
In this section, we detail the implementation of the forward
and backward passes for depth rendering.

A.1 Forward Pass
We begin with the initial median depth 𝑡𝑖𝑛𝑖𝑡 obtained from
RaDe-GS [Zhang et al. 2024]. We then establish an initial depth
interval [𝑡𝑖𝑛𝑖𝑡 − 𝑟, 𝑡𝑖𝑛𝑖𝑡 + 𝑟 ] and search for the median depth
within this range, setting r to 0.4 during training. To perform
the binary search, we need to traverse the Gaussians along
the camera ray and record the transmittance at the mid-point,
comparing it to the target value of 0.5. However, traversing
Gaussians can be time-consuming, so we aim to reduce the
number of Gaussian traversals. Specifically, instead of splitting
the interval into two segments by a midpoint, we evenly divide
it into eight segments using seven segment points and record
the transmittance at each segment point. After each traversal,
we locate the segment whose endpoint transmittance values
fall on opposite sides of 0.5 and use it as the new search
interval. Under this setting, a single traversal is equivalent to
three binary-search iterations. We repeat this process 5 times,
gradually narrowing the interval until the final depth error is
within 0.8 × 8−5 = 2.441 × 10−5. In the first pass, we also record
the transmittance values at both ends of the interval, i.e., 𝑡𝑖𝑛𝑖𝑡 −𝑟 ,
𝑡𝑖𝑛𝑖𝑡 + 𝑟 . If both values are above 0.5 or below 0.5, we mask the
pixel for geometric regularization.

A.2 Backward Pass
The backpropagation of depth can be calculated as,

𝜕𝐿

𝜕𝑡𝑚𝑒𝑑

· 𝜕𝑡𝑚𝑒𝑑

𝜕𝜃
, (14)

where 𝐿 denotes the loss, 𝑡𝑚𝑒𝑑 is the median depth computed in
the forward pass, and 𝜃 represents the parameters of the Gaus-
sians along the camera ray. We further write 𝜃 = {𝜃𝑖 }, where
𝜃𝑖 denotes the parameters of the 𝑖-th Gaussian. The first term
𝜕𝐿/𝜕𝑡𝑚𝑒𝑑 is the input of the backward function, and we need
to calculate the second term. The formulation of the second
term is shown in Equation 13 of the main submission and will
be derived in section I. It is composed of 𝜕𝑇 (𝑡 ;𝜃 )/𝜕𝑡 |𝑡=𝑡𝑚𝑒𝑑

and
𝜕𝑇 (𝑡𝑚𝑒𝑑 ;𝜃 )/𝜕𝜃 . We traverse the Gaussians along the ray twice,
computing the two terms in separate passes.

In the first pass, we calculate 𝜕𝑇 (𝑡 ;𝜃 )/𝜕𝑡 |𝑡=𝑡𝑚𝑒𝑑
. Equation 10

and Equation 11 of the main submission show that,

𝑇 (𝑡𝑚𝑒𝑑 ;𝜃 ) =
∏
𝑖

𝑇𝑖 (𝑡𝑚𝑒𝑑 ;𝜃𝑖 ) = 0.5. (15)

We can obtain:

𝜕𝑇 (𝑡 ;𝜃 )
𝜕𝑡

|𝑡=𝑡𝑚𝑒𝑑
=
∑︁
𝑖

∑︁
𝑗≠𝑖

𝑇𝑗 (𝑡𝑚𝑒𝑑 ;𝜃 𝑗 )
𝜕𝑇𝑖 (𝑡 ;𝜃𝑖 )

𝜕𝑡
|𝑡=𝑡𝑚𝑒𝑑

=
∑︁
𝑖

𝑇 (𝑡𝑚𝑒𝑑 ;𝜃 )
𝑇𝑖 (𝑡𝑚𝑒𝑑 ;𝜃𝑖 )

𝜕𝑇𝑖 (𝑡 ;𝜃𝑖 )
𝜕𝑡

|𝑡=𝑡𝑚𝑒𝑑

=
∑︁
𝑖

0.5
𝑇𝑖 (𝑡𝑚𝑒𝑑 ;𝜃𝑖 )

𝜕𝑇𝑖 (𝑡 ;𝜃𝑖 )
𝜕𝑡

|𝑡=𝑡𝑚𝑒𝑑
.

(16)

After computing Equation 16, we modify the standard Gauss-
ian Splatting color-accumulation backward pass to additionally
compute 𝜕𝑇 (𝑡𝑚𝑒𝑑 ;𝜃 )/𝜕𝜃𝑖 for each Gaussian.

𝜕𝑇 (𝑡 ;𝜃 )
𝜕𝜃𝑖

=
∑︁
𝑗≠𝑖

𝑇𝑗 (𝑡𝑚𝑒𝑑 ;𝜃 𝑗 )
𝜕𝑇𝑖 (𝑡𝑚𝑒𝑑 ;𝜃𝑖 )

𝜕𝜃𝑖

=
𝑇 (𝑡𝑚𝑒𝑑 ;𝜃 )
𝑇𝑖 (𝑡𝑚𝑒𝑑 ;𝜃𝑖 )

𝜕𝑇𝑖 (𝑡𝑚𝑒𝑑 ;𝜃𝑖 )
𝜕𝜃𝑖

=
0.5

𝑇𝑖 (𝑡𝑚𝑒𝑑 ;𝜃𝑖 )
𝜕𝑇𝑖 (𝑡𝑚𝑒𝑑 ;𝜃𝑖 )

𝜕𝜃𝑖
.

(17)

The 𝜕𝑇𝑖 (𝑡 ;𝜃𝑖 )/𝜕𝑡 |𝑡=𝑡𝑚𝑒𝑑
in Equation 16 and 𝜕𝑇𝑖 (𝑡𝑚𝑒𝑑 ;𝜃𝑖 )/𝜕𝜃𝑖 in

Equation 17 can be easily derived from the closed formed
formulation of 𝑇𝑖 , i.e., Equation 12 of the main submission.
Using Equation 13 of the main submission, we plug Equa-
tion 16 and Equation 17 into Equation 14. The gradients are
backpropagated to each Gaussian as,

𝜕𝐿

𝜕𝑡𝑚𝑒𝑑

· 𝜕𝑡𝑚𝑒𝑑

𝜕𝜃𝑖
=

𝜕𝐿

𝜕𝑡𝑚𝑒𝑑

· 𝜕𝑇 (𝑡𝑚𝑒𝑑 ;𝜃 )
𝜕𝜃𝑖

/(− 𝜕𝑇 (𝑡 ;𝜃 )
𝜕𝑡

|𝑡=𝑡𝑚𝑒𝑑
). (18)

B Gaussian Splatting Preliminaries
Gaussian Splatting represents a scene as a set of 3D Gaussian
primitives. A single primitive is parameterized by a center
x𝑐 ∈ R3, an opacity 𝑜 ∈ [0, 1], and a symmetric positive definite
covariance Σ ∈ R3×3,

𝐺 (x) = 𝑜 exp
(
− (x − x𝑐 )⊤Σ−1 (x − x𝑐 )

)
. (19)

From 3D to screen-space Gaussians. To render efficiently, Gauss-
ian Splatting rasterizes each 3D Gaussian as an elliptical 2D
Gaussian on the image plane. Let the camera extrinsics map
world coordinates to camera coordinates, and denote the world-
to-camera rotation as W. The covariance in the camera frame
is

Σ𝑐𝑎𝑚 = WΣW⊤ . (20)
Let 𝜋 (·) be the perspective projection and u𝑐 = 𝜋 (x𝑐,𝑐𝑎𝑚) be
the projected center on the image plane. Using a local affine
approximation of 𝜋 around x𝑐,𝑐𝑎𝑚 , the screen-space covariance
is obtained via multiplying with a Jacobian matrix:

Σ′
2𝐷 = J Σ𝑐𝑎𝑚 J⊤ = JWΣW⊤J⊤, (21)

where J ∈ R2×3 is the Jacobian of the perspective projection
evaluated at x𝑐,𝑐𝑎𝑚 .
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Per-pixel alpha. Given a pixel location u ∈ R2, the Gaussian
contributes an opacity (alpha) determined by its screen-space
ellipse:

𝛼 (u) = 𝑜 𝑒−(u−u𝑐 )⊤Σ
′−1
2𝐷 (u−u𝑐 ) , (22)

where u𝑐 is the projected Gaussian center. In practice, each
Gaussian is evaluated only on pixels within a finite screen-space
support to keep rasterization fast.

Alpha compositing. For each pixel, let 𝑁 denote the set of
Gaussians whose projected support overlaps that pixel. These
Gaussians are depth-sorted and accumulated using standard
alpha blending. Denoting the per-Gaussian color as c𝑖 and
𝛼𝑖 = 𝛼𝑖 (u), the rendered color is

C(u) =
∑︁
𝑖∈𝑁

c𝑖 𝛼𝑖
𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ). (23)

C Loss Functions
During training, we employ three loss terms: the photometric
loss from Gaussian Splatting [Kerbl et al. 2023], the normal
consistency loss from 2D GS [Huang et al. 2024], and the multi-
view regularization from PGSR [Chen et al. 2024]. We describe
each term below.

Photometric loss. We follow [Kerbl et al. 2023] and define the
photometric loss as a weighted combination of an 𝐿1 term and
a D-SSIM term between the rendered image and the ground-
truth image:

𝐿𝑐 = (1 − 𝜆) 𝐿1 + 𝜆 𝐿𝑆𝑆𝐼𝑀 , (24)
where 𝜆 is a hyperparameter.

Normal consistency. Photometric supervision alone is insuffi-
cient to constrain geometry, so we introduce additional geomet-
ric regularization. Specifically, we adopt the normal-consistency
loss from 2D GS [Huang et al. 2024], which encourages the
Gaussian normals to agree with the surface normal estimated
from the rendered depth map. Concretely, we compute a refer-
ence normal ñ by applying finite differences to the depth map
and penalize its angular deviation from each Gaussian normal:

L𝑛 =
∑︁
𝑖

𝜔𝑖

(
1 − n⊤

𝑖 ñ
)
, (25)

where n𝑖 is the normal of the 𝑖-th Gaussian along the ray, and
𝜔𝑖 = 𝛼𝑖

∏𝑖−1
𝑗=1 (1 − 𝛼 𝑗 ) is its alpha-compositing weight.

Multi-view regularization. We adopt the multi-view regu-
larization of PGSR [Chen et al. 2024] to our method, which
combines a photometric term with an explicit geometric cycle-
consistency term. Concretely, for each reference pixel u𝑟 , we
approximate the local surface as a plane using the rendered
depth and normal, and use the induced plane homography to
relate the reference view to a neighboring view:

H𝑟𝑛 = K𝑛

(
R𝑟𝑛 + T𝑟𝑛n⊤

𝑟

p⊤
𝑟 n𝑟

)
K−1
𝑟 , (26)

where K𝑟 and K𝑛 are the intrinsics, (R𝑟𝑛,T𝑟𝑛) is the relative
pose from the reference to the neighboring camera, n𝑟 is the
rendered normal at u𝑟 , and p𝑟 is the 3D point in the reference

camera frame obtained from the rendered depth along the ray
through u𝑟 .

Using H𝑟𝑛 , we warp the neighboring image into the reference
frame and enforce patch-level photometric consistency via
normalized cross-correlation (NCC):

𝐿𝑝𝑐 =
∑︁
u𝑟

𝑤 (u𝑟 )
(
1 − NCC

(
𝐼𝑟 (u𝑟 ), 𝐼𝑛 (H𝑟𝑛u𝑟 )

) )
, (27)

where 𝐼𝑟 and 𝐼𝑛 denote the reference and neighboring images.
To handle occlusions and unreliable correspondences, PGSR
defines a confidence weight from a forward–backward repro-
jection cycle. Specifically, letting H𝑛𝑟 denote the homography
that maps from the neighboring view back to the reference
view, the cycle reprojection error is

𝜙 (u𝑟 ) = ∥u𝑟 − H𝑛𝑟H𝑟𝑛u𝑟 ∥2 , (28)

which is the same reprojection error introduced in the main
submission. The confidence is then

𝑤 (u𝑟 ) =
{
exp

(
− 𝜙 (u𝑟 )

)
, 𝜙 (u𝑟 ) < 1,

0, 𝜙 (u𝑟 ) ≥ 1,
(29)

thus discarding pixels with large cycle error.
In addition to the photometric term, PGSR directly penal-

izes the cycle reprojection error to encourage view-consistent
geometry:

𝐿𝑔𝑐 =
∑︁
u𝑟

𝑤 (u𝑟 ) 𝜙 (u𝑟 ) . (30)

The overall multi-view regularization is

𝐿𝑚𝑣 =𝑤𝑝𝑐𝐿𝑝𝑐 +𝑤𝑔𝑐𝐿𝑔𝑐 , (31)

where 𝑤𝑝𝑐 and 𝑤𝑔𝑐 control the relative strength of photometric
and geometric consistency.

Our final training loss L is,

L = L𝑐 +𝑤𝑛L𝑛 + 𝐿𝑚𝑣 . (32)

We use 𝑤𝑛 = 0.05, 𝑤𝑝𝑐 = 0.6, 𝑤𝑔𝑐 = 0.02, and set 𝜆 = 0.2 in
Equation 24.

D Comparison on Novel View Synthesis
We further compare novel view synthesis results across meth-
ods. Table 4 shows the quantitative results on the Mip-NeRF
360 dataset. Our method achieves competitive performance
compared with existing surface reconstruction baselines, while
RayGaussX produces the overall best rendering quality. To
isolate the effect of specular modeling, we augment our model
with the spherical Gaussian mixture used in RayGaussX, de-
noted as Ours (SG). Notably, we use these Gaussian lobes only
in this experiment; all other experiments use our default model
without Gaussian lobes. Figure 14 shows the qualitative results
of our method.

E Limitation and Future Work
To maintain the efficiency of Gaussian Splatting, this paper
only considers the volumetric effects when rendering depth.
Future works can combine the stochastic theory with existing
volume rendering methods [Blanc et al. 2025b; Kheradmand
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RenderGround truth Render (SG) Mesh Mesh (SG)

Fig. 14. Qualitative results on the Mip-NeRF 360 dataset [Barron et al. 2022]. We visualize novel view synthesis and shape reconstruction results for our
method, and for our method augmented with the spherical Gaussian appearance model of RayGauss [Blanc et al. 2025a]. Incorporating spherical Gaussians
improves rendering quality in specular regions.

Table 4. Quantitative results on Mip-NeRF 360 dataset. The best scores
are highlighted with colors.

Outdoor Scene Indoor Scene
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

N
VS

NeRF 21.46 0.458 0.515 26.84 0.790 0.370
Deep Blending 21.54 0.524 0.364 26.40 0.844 0.261
Instant NGP 22.90 0.566 0.371 29.15 0.880 0.216
Mip-NeRF 360 24.47 0.691 0.283 31.72 0.917 0.180
3DGS 24.67 0.728 0.240 30.96 0.924 0.187
SVRaster 24.68 0.738 0.206 30.65 0.927 0.161
RayGaussX 25.24 0.761 0.167 32.43 0.943 0.146

Su
rf

ac
e

Re
co

n.

BakedSDF 22.47 0.585 0.349 27.06 0.836 0.258
SuGaR 22.93 0.629 0.356 29.43 0.906 0.225
2DGS 24.34 0.717 0.246 30.40 0.916 0.195
GOF 24.82 0.750 0.202 30.79 0.924 0.184
VCR-GauS 24.31 0.707 0.280 30.53 0.921 0.184
PGSR 24.76 0.752 0.203 30.36 0.934 0.147
GeoSVR 24.83 0.738 0.218 30.46 0.921 0.172
Ours (SG) 24.97 0.754 0.200 32.18 0.938 0.150
Ours 25.09 0.760 0.196 31.02 0.934 0.154

et al. 2025] to fully utilize the volumetric nature of stochastic
when rendering color and normal maps. We believe this will
lead to further improvement in shape reconstruction.

To compute the median depth, our binary search is initialized
with a fixed depth interval. This interval must be sufficiently
wide, which increases the number of search steps and slows
training. For large-scale scenes, the true median depth may even
fall outside this preset range, hindering effective optimization.
We leave it to future work to develop adaptive bracketing
strategies that reliably locate the median and tighten the initial
interval, further accelerating depth rendering.

In Marching Tetrahedra, while the vertex placement is
Gaussian-aware, the subsequent 3D Delaunay triangulation
step remains general-purpose. In practice, reconstructing thin
or near-planar structures often requires dense vertices. De-
signing Gaussian-specific tetrahedralization and refinement
strategies is a meaningful direction for future work.

As we have bridged the gap between Gaussian and NeRF
reconstruction methods, future work could consider adopting
geometric regularization from NeRF-based methods, e.g., Neu-
ralangelo [Li et al. 2023], for Gaussian Splatting-based methods
to enhance shape quality.

F Proof of the Equation 6 in the main submission
As shown in Figure 15, Gaussian Splatting [Kerbl et al. 2023]
applies a local affine approximation when projecting a Gaussian
primitive. As a result, the light rays from the camera center
are parallel to each other. The 3D Gaussian values on each ray
form a 1D Gaussian function, which is denoted as 𝐺𝑢𝑣 (𝑡). It is

Observe 3D Gaussian Gaussian value on 
the ray

𝑡𝑡∗

𝑡𝑡∗

𝑡𝑡∗

Fig. 15. Gaussian Splatting uses local affine approximation so that rays
are parallel to each other. Gaussian functions on the rays have the same
variance but different maximum values.

interesting to notice that these 1D Gaussians on different light
rays have the same variance but different maximum values.

Gaussian Splatting performs volume rendering on a single
primitive as:

𝐺 ′
2𝐷 (𝑢, 𝑣) =

∫ +∞

−∞
𝐺𝑢𝑣 (𝑡) 𝑑𝑡, (33)
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which is proportional to the maximum value of𝐺𝑢𝑣 (𝑡) because
of the identical spread, shown in Figure 15.

Furthermore, as shown in Equation 22, Gaussian Splatting
normalizes the maximum value of the 2D Gaussian to opacity
𝑜 , which aligns the maximum value between the 2D and the 3D
Gaussians, ensuring that the 2D Gaussian value matches the
maximum value of the corresponding 1D Gaussian along the
ray. This conclusion facilitates the derivation of the stochastic
Gaussian solid. While our result is derived from local affine
projection, our method can be easily extended to perspective
projection.

G Proof of "Gaussians as Stochastic Solids"
Miller et al. [2024] propose a method to render stochastic
opaque solids by converting the vacancy to the attenuation
coefficient:

𝜎 (x, 𝜔) = |𝜔 · ∇𝑙𝑜𝑔(v(x)) | = |𝜔 · ∇v(x) |
v(x) , (34)

where v represents the vacancy of the stochastic solid.
In this section, we will prove that given a Gaussian primitive

𝐺 (x) rendered by Gaussian Splatting, we can find a solid that
generates the same rendering results by the stochastic theory.
The vacancy of the solid should satisfy:

v(x) =
√︁
1 −𝐺 (x). (35)

We will prove that under the following constraints, the
stochastic solid can be uniquely determined:

– When 𝐺 (x1) ≥ 𝐺 (x2), it follows that o(x1) ≥ o(x2), indi-
cating that positions closer to the Gaussian center have
higher occupancy;

– The occupancy of the solid approaches 0 when x is far
from Gaussian center;

– The occupancy o(x) is differentiable with respect to x.

Proof : Assume a line 𝑙 parameterized by 𝑡 passes through
𝐺 (x). We get the value of𝐺 (x) on the line forming a 1D Gaussian
function 𝐺 (𝑡), where 𝑡 goes from −∞ to +∞ and reaches the
maximum of the 1D Gaussian at 𝑡∗.

Firstly, we derive the color from volume rendering. According
to the first assumption, the vacancy function along this line 𝑙 has
the opposite monotonicity compared to the Gaussian function.
We will get the attenuation coefficient from Equation 34:

𝜎 (𝑡) = |𝜔 · ∇𝑙𝑜𝑔(v(x)) |

= | 𝜕𝑙𝑜𝑔(v(x))
𝜕𝑡

|

=

{
− 𝜕𝑙𝑜𝑔 (v(x) )

𝜕𝑡
, 𝑡 ≤ 𝑡∗

𝜕𝑙𝑜𝑔 (v(x) )
𝜕𝑡

, 𝑡 > 𝑡∗

(36)

Since a Gaussian kernel has a uniform color, we can simplify
the volume rendering:

C =

∫ 𝑡=+∞

𝑡=−∞
𝑇 (𝑡)𝜎 (x(𝑡), 𝜔)c𝑑𝑡

= c
∫ 𝑡=+∞

𝑡=−∞
𝑇 (𝑡)𝜎 (x(𝑡), 𝜔) 𝑑𝑡

= c
∫ 𝑡=+∞

𝑡=−∞
−𝑑𝑇 (𝑡)

= c𝑇 (𝑡)
��𝑡=−∞
𝑡=+∞ = c(1 −𝑇 (+∞))

(37)

We then substitute the Equation 36 into Equation 37 to get the
form of color from volume rendering:

𝑇 (∞) =𝑇 (−∞, 𝑡∗) ×𝑇 (𝑡∗,+∞)

= 𝑒−
∫ 𝑡∗
−∞ 𝜎 (x(𝑠 ),𝜔 ) × 𝑒−

∫ +∞
𝑡∗ 𝜎 (x(𝑠 ),𝜔 )

= 𝑒
−(−𝑙𝑜𝑔 (v(𝑡 ) )

��𝑡∗
−∞ ) × 𝑒

−(𝑙𝑜𝑔 (v(𝑡 ) )
��+∞
𝑡∗ )

=
v(𝑡∗)
v(−∞) ×

v(𝑡∗)
v(+∞)

= v(𝑡∗)2

C =c(1 −𝑇 (+∞)) = c(1 − v(𝑡∗)2),

(38)

where we use the second assumption that v(∞) = 1 − o(∞) = 1.
Secondly, with the color derived from Gaussian Splatting

and volume rendering, we can find the relationship between
v(𝑡∗) and 𝐺 (𝑡∗):

c𝐺 (𝑡∗) = c(1 − v(𝑡∗)2) ⇒ v(𝑡∗) =
√︁
1 −𝐺 (𝑡∗) (39)

Finally, we will generalize Equation 39 from maximum points
to all 3D points. Different lines 𝑙 have different maximum
points, and Equation 39 should hold for the maximum point
on any line. Given any x ∈ R3, we can always find the direction
𝜔 ∈ S2 satisfying 𝜔 · ∇𝐺 (x) = 𝜕𝐺 (x)

𝜕𝜔
= 0, indicating that x is the

maximum point along ray 𝑙 : x + 𝑡𝜔 . Therefore, the equation
should hold for any position x, which reaches the unique
solution of vacancy in Equation 35.

H Derivation of Equation 12 of the main submission
In this section, we will derive the closed form 𝑇𝑖 (𝑡) in Equa-
tion 12 of the main submission, which is also the negative
integral of the free-flight distribution −

∫
𝑝 (𝑡) 𝑑𝑡 . For brief nota-

tion, we use𝑇 to denote the transmittance of a single Gaussian.
We start from 𝑡𝑛 = −∞. Similar to Equation 38, when 𝑡 < 𝑡∗,

𝑇 (−∞, 𝑡) = 𝑒−
∫ 𝑡∗
−∞ 𝜎 (x(𝑠 ),𝜔 ) = v(𝑡) . (40)

When 𝑡 > 𝑡∗,

𝑇 (−∞, 𝑡) =𝑇 (−∞, 𝑡∗) × 𝑒−
∫ 𝑡∗
−∞ 𝜎 (x(𝑠 ),𝜔 )

= v(𝑡∗) × v(𝑡∗)
v(𝑡)

=
v(𝑡∗)2
v(𝑡) .

(41)

In most cases, the Gaussian primitive is far from the camera,
so we can simply use 𝑇 (−∞, 𝑡) as 𝑇 (𝑡).
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I Derivation of Equation 13 of the main submission
In this section, we will derive the gradient of the depth 𝑡𝑚𝑒𝑑

with respect to the parameters of all the Gaussians along the
ray. Since 𝑇 (𝑡𝑚𝑒𝑑 ) is a constant value of 0.5, its differential is 0.

𝑇 (𝑡𝑚𝑒𝑑 ;𝜃 ) ≡ 0.5, (42)
𝑑𝑇 (𝑡𝑚𝑒𝑑 ;𝜃 ) ≡ 0, (43)

where 𝜃 represents the parameters of Gaussians along the ray.
We then expand the 𝑑𝑇 and plug 𝑡𝑚𝑒𝑑 into it to derive the

gradient:

𝑑𝑇 (𝑡 ;𝜃 ) = 𝜕𝑇

𝜕𝑡
𝑑𝑡 + 𝜕𝑇

𝜕𝜃
· 𝑑𝜃 (44)

0 =
𝜕𝑇

𝜕𝑡
𝑑𝑡𝑚𝑒𝑑 + 𝜕𝑇

𝜕𝜃
· 𝑑𝜃 (45)

𝑑𝑡𝑚𝑒𝑑 = (− 𝜕𝑇

𝜕𝜃
/ 𝜕𝑇
𝜕𝑡

) · 𝑑𝜃 . (46)

So that the gradient of depth is derived as,
𝜕𝑡𝑚𝑒𝑑

𝜕𝜃
= − 𝜕𝑇 (𝑡𝑚𝑒𝑑 ;𝜃 )

𝜕𝜃
/ 𝜕𝑇 (𝑡 ;𝜃 )

𝜕𝑡

��
𝑡=𝑡𝑚𝑒𝑑

, (47)
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